Tactile perception by friction induced vibrations
نویسندگان
چکیده
When a finger moves to scan the surface of an object (haptic sensing), the sliding contact generates vibrations that propagate in the finger skin activating the receptors (mechanoreceptors) located in the skin, allowing the brain to identify objects and perceive information about their properties. The information about the surface of the object is transmitted through vibrations induced by friction between the skin and the object scanned by the fingertip. The mechanoreceptors transduce the stress state into electrical impulses that are conveyed to the brain. A clear understanding of the mechanisms of the tactile sensing is fundamental to numerous applications, like the development of artificial tactile sensors for intelligent prostheses or robotic assistants, and in ergonomics. While the correlation between surface roughness and tactile sensation has already been reported in literature, the vibration spectra induced by the finger-surface scanning and the consequent activation of the mechanoreceptors on the skin have received less attention. In this paper, frequency analysis of signals characterizing surface scanning is carried out to investigate the vibration spectrum measured on the finger and to highlight the changes shown in the vibration spectra as a function of characteristic contact parameters such as scanning speed, roughness and surface texture. An experimental set-up is developed to recover the vibration dynamics by detecting the contact force and the induced vibrations; the bench test has been designed to guarantee reproducibility of measurements at the low amplitude of the vibrations of interest, and to perform measurements without introducing external noise. Two different perception mechanisms, as a function of the roughness wavelength, have been pointed out. The spectrum of vibration obtained by scanning textiles has been investigated. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces.
In humans, the tactile perception of fine textures is mediated by skin vibrations when scanning the surface with the fingertip. These vibrations are encoded by specific mechanoreceptors, Pacinian corpuscules (PCs), located about 2 mm below the skin surface. In a recent article, we performed experiments using a biomimetic sensor which suggest that fingerprints (epidermal ridges) may play an impo...
متن کاملTactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, re...
متن کاملCALL FOR PAPERS Neurophysiology of Tactile Perception: A Tribute to Steven Hsiao The role of vibration in tactile speed perception
Dallmann CJ, Ernst MO, Moscatelli A. The role of vibration in tactile speed perception. J Neurophysiol 114: 3131–3139, 2015. First published September 30, 2015; doi:10.1152/jn.00621.2015.—The relative motion between the surface of an object and our fingers produces patterns of skin deformation such as stretch, indentation, and vibrations. In this study, we hypothesized that motion-induced vibra...
متن کاملSingle Pitch Perception of Multi-frequency Textures
This study explores people’s ability to distinguish spatial complexity in tactile textures, with the eventual goal of reducing the necessary complexity of texture representation for surface display devices. To this end, we tested subjects’ ability to perceptually match a reference texture containing two spatial frequency components by adjusting the frequency and amplitude of a single frequency....
متن کاملThe tactile perception of transient changes in friction
When we touch an object or explore a texture, frictional strains are induced by the tactile interactions with the surface of the object. Little is known about how these interactions are perceived, although it becomes crucial for the nascent industry of interactive displays with haptic feedback (e.g. smartphones and tablets) where tactile feedback based on friction modulation is particularly rel...
متن کامل